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In the development  of b o u n d a r y - l a y e r  theory  in the Soviet Union there  has always been a c lose  r e l a -  
t ionship between theory  and p rac t i ce .  The effor t  to opt imize the shapes of a i r c ra f t  and ships and to de-  
sign efficient power  instal lat ions and motor s  has been aided signif icant ly by p r o g r e s s  in bounda ry - l aye r  
theory.  It is difficult to distinguish c l ea r l y  the basic  s tages  in the development  of this theory and those of 
its technical  applicat ions in the Soviet Union, but c l ea r ly  these s tages  have coincided with s tages  in the 
sea rch  for  be t t e r  a i r c r a f t  and ships,  in the effor t  to reduce losses  in machines ,  in the effor t  to intensify 
p r o c e s s e s  in jet  engines and chemical  instal lat ions,  and (recently) in effor ts  to achieve an advanced space  
technology. 

1. In the c l a s s i ca l  s tudies c a r r i e d  out toward the end of the las t  century by the prominent  Russ ian  
sc ien t i s t s  Mendeleev and Zhukovskii ,  one can find information,  albeit  quali tat ive,  about the boundary l ayer  
and its ro le  in hydrodynamic  drag.  Mendeleev [1] at tr ibuted drag  to the exis tence of a thin l aye r  "at tached" 
to the su r f ace  of the object  because  of the v i scos i ty  of the liquid; he bel ieved that this l ayer  "moved and 
dragged along neighboring l a y e r s . "  In a sense  anticipating the modern  understanding of the drag  of rough 
su r f aces ,  he wrote ,  " . . .  the d rag  of the i r r egu la r i t i e s  themse lves  is of the s a m e  nature  as the d rag  of a 
plate  moving no rma l ly . "  Mendeleev cr i t ic ized  the Rankin fr ict ion theory of drag  which was cu r r en t  at that 
t ime.  As a founder of metrology,  the sc ience  of m e a s u r e m e n t s ,  he offered a profound analysis  of the r e a -  
sons for  e r r o r s  in l abora to ry  m e a s u r e m e n t s  of drag.  

Zhukovskii  [2] offered a comple te ly  c lea r  descr ip t ion of the p r o c e s s e s  occur r ing  in a boundary layer;  
in his widely known s e r i e s  of l ec tures  [3] he also d iscussed  the quanti tat ive aspec t  of the mat te r ,  f o r m u l a t -  
ing the " th r ee -ha lves  law" for the l amina r  f r ic t ional  drag  of a plate.  The f i r s t  publications on boundary-  
l aye r  theory appeared  in the Soviet l i t e ra tu re  in 1933-1937 [4]. The original  Soviet studies dealing with 
b o u n d a r y - l a y e r  theory  contained var ious  modificat ions of the Karman  method [5]; new integral  re la t ions  
were  establ ished.  The "energe t ic"  re la t ion  proposed by Leibenzon and its genera l iza t ion by Golubev [6] 
w e r e  among these integral  re la t ions .  The f i r s t  application of the theory  of b o u n d a r y - l a y e r  separa t ion  to 
explain the operat ion of a slotted wing appeared [7]. 

E m p i r i c a l  power - l aw  equations fo r  the veloci t ies  in turbulent flow in tubes were  used in calculat ions 
dealing with the turbulent  boundary l ayer  for  a solid of revolution [8] r ep re sen t ing  the su r face  of a dir igible.  

Note should be taken of the in teres t  in the hea t -engineer ing  p rob lems  of bounda ry - l aye r  theory  which 
developed in the 1930s. This in teres t  a rose  with the development  of methods for measur ing  the veloci ty  
and t e m p e r a t u r e  dis t r ibut ions at c ro s s  sect ions of a boundary l aye r  on the sur face  of a hot object  by means 
of mic roscop ic  Pitot  tubes, t he rma l  anemomete r s ,  and mic roscop ic  thermocouples  [9]. A va r i e t y  of s tud-  
ies dealing with the effects  of ar t i f ic ia l  bounda ry - l aye r  turbulence on flow, drag,  and heat exchange with 
the surrounding liquid [10, 11] were  ca r r i ed  out in an effor t  to reduce  the drag  of bo i l e r  pipes and to inten- 
s ify heat exchange at the su r f aces  of these pipes .  The dependence of the heat t r an s f e r  of objects ,  pa r t i cu -  
l a r ly  s p h e r e s ,  on the sur face  distr ibution of lines cor responding  to the convers ion  of l amina r  flow into 
turbulent  flow (governed by the turbulence of the flow incident on the object) led to the es tab l i shment  of a 
" the rmal  s ca l e "  for  turbulence [12]. This sca le  turned out to be vas t ly  s imp le r  and more  convenient  in ap- 
pl icat ion than the "dynamic s ca l e "  then available,  which was based on m e a s u r e m e n t  of the d rag  of a sphere  
or  the p r e s s u r e  drop between the forward  and r e a r  c r i t i ca l  points.  
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The s e m i e m p i r i c a l  turbulence theor ies  developed during this period were  extended to take into ac -  
count the  interact ion of l amina r  and turbulent momentum t r a n s f e r  in the par t  of the boundary l ayer  adjacent  
to the su r face  on the nature  of the o v e r - a l l  f r ic t ion [13]. New bases  were  offered for  the Prandt l  and K a r -  
man theor ies  [14], which at that t ime were  c l ea r ly  in need of such justif ication.  

The p rospec t  of flight at high supersonic  veloci t ies  spu r r ed  in teres t  in bounda ry - l aye r  theory for  flow 
in gases .  F r a n k l '  [15, 16] c a r r i e d  out the f i r s t  Soviet s tudies of f r ic t ion and heat t r a n s f e r  in l amina r  and 
turbulent boundary l aye r s  on a f lat  su r face  in a high-veloci ty  gas flow. 

2. During the p r e w a r  per iod (1936-1940) bounda ry - l aye r  theory made p r o g r e s s  in the Soviet Union, 
both in the development  of calculat ion methods and in the development  of a va r i e ty  of technical  applications.  
Exper imenta l  p rocedure  also advanced. 

The K a r m a n  method for  dealing with a l ayer  of finite thickness (at the t ime the only p rac t i ca l  method 
for  ca r ry ing  out calculat ions for  l amina r  and turbulent boundary layers)  was ref ined through the use of a 
family of veloci ty  prof i les  be t t e r  ref lect ing the actual si tuation [17]. The compl ica ted graphical  method then 
in use to in tegrate  the momentum equation was replaced by s imp le r  analytic methods [18, 19]. 

The s e m [ e m p i r i c a l  P r a n d t l - K a r m a n  theor ies  found wide use in the theory of a turbulent boundary 
layer .  The logar i thmic  veloci ty  prof i le  was used to calcula te  the turbulent  boundary  l aye r  on sol ids  of r e -  
volution in a longitudinal flow [20]. The drag  equations found were  useful at the high Reynolds numbers  c o r -  
responding to the actual dimensions of dir igibles  and submar ines .  Fedyaevski i  [21, 22] published a new 
method for  calculat ing the turbulent boundary layer ,  based  on the Prandt l  turbulent - f r ic t ion  equation and 
approximate  equations for  the distr ibution of the "mixing path" and the f r ic t ional  s t r e s s  at c r o s s  sect ions  
of the boundary layer .  This method became widely used to calculate  the drag  on wings and solids of r evo -  
lution [23]. Another method for  calculat ing the turbulent  boundary l aye r  also based  on the Ka rman  theory,  
was developed by Mel 'nikov [24]. A long s e r i e s  of theoret ica l  and exper imenta l  studies [25-27] were  de-  
voted to turbulent boundary l aye r s  on rough su r faces  and to the theory  of turbulent motion nea r  such s u r -  
faces  [28]. These  studies furnished the bas i s  for  solving an impor tant  technical  p rob lem - increas ing  the 
speed of a i rc ra f t ,  ships,  and submar ines  - by reducing the su r face  drag  and increas ing  the heat t r an s f e r  
through the use of sur face  roughness .  

Studies [29-32] of the effect  of turbulence in the incident flow on the development  of a turbulent bound- 
ary  layer  (in par t i cu la r ,  on the position of the line at which the l amina r  boundary l aye r  conver t s  into a tu r -  
bulent boundary layer ,  on the separa t ion  of the layer  f r o m  the su r face  of the object,  and on the total drag  of 
the object) were  of cons iderable  p rac t i ca l  importance .  There  was pa r t i cu la r  in teres t  in methods for  con-  
ver t ing  l abora to ry  data on drag  for  use under nonlabora tory  conditions (the sca le  effect). 

The re  was a continuation and s t rengthening of the re la t ionship  between bounda ry - l aye r  theory and 
p rob lems  of heat t r an s f e r  at hot su r faces  which then confronted the des igners  of new types of s ing l e -pas s  
s t e a m  gene ra to r s .  Kruzhil in [33] introduced the concept  of a t e m p e r a t u r e  boundary l ayer  of finite thickness 
and used this concept to calcula te  the heat t r an s f e r  at cyl indr ical  objects in p lanar  flows. A new integral  
heat  re la t ion was establ ished on the bas is  of a method ve ry  s i m i l a r  to the Karman  method, and the solutions 
found by this method were  used to obtain genera l  dependences of the NusselL number  on the Praudt l  and R e y -  
nolds numbers .  These  equations were  used to calculate  heat  t r an s f e r  at a plate and at the leading edge of 
a c i r cu l a r  cy l inder  [34]; they were  subsequently genera l ized  [35] through an account of the disw of 
mechanical  energy into heat at high flow veloci t ies .  

The  f i r s t  theore t ica l  study of heat t r a n s f e r  in a turbulent boundary l ayer  was repor ted  by Shvab [36]. 
Using the f ami l i a r  Reynolds analogy and specifying s i n g l e - t e r m  power- law veloci ty  and t e m p e r a t u r e  d i s t r i -  
butions, he found equations for  the heat  t r an s f e r  at a plate,  a cyl inder ,  and a solid of revolution in a smooth 
flow. In [37] he took into account the sens i t iv i ty  of heat t r an s f e r  to the posit ion of the line at which the t a m -  
inar  boundary  layer  conver t s  into a turbulent layer .  In addition to having obvious technical  applications,  
this work  led to the opt imum shape for  the the rma l  turbulence gage on which he based a new the rmal  sca le  
for  turbulence [38]. 

Fedyaevski i  [39] der ived a s e m i e m p i r i c a l  method for  calculat ing heat t r a n s f e r  based  on the theory of 
a turbulent boundary l ayer  [21, 22]. A cha rac t e r i s t i c  fea ture  of this study was the es tabl i shment  of a r e -  
lationship between the Nussel t  number  on the one hand and the Prandt l  number  and the d rag  coeff icient  on 
the other ,  to rep lace  the commonly  used Reynolds number .  
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One of the mos t  important  achievements  in the p r ewar  development  of bounda ry - l aye r  theory may  
have been the der ivat ion by F rank l '  [40] of a new method for  calculat ing the turbulent boundary layer  at a 
plate in a h igh-veloci ty  gas flow. This  method, based on the Ka rman  s e m i e m p i r i c a l  theory of turbulence,  
was for  a long t ime the only method avai lable in the l i t e ra tu re .  Its resu l t s  were  conf i rmed v e r y  s a t i s f a c -  
tor i ly  by subsequent  exper imen t s  in flows at supersonic  veloci t ies .  

The uncer ta in ty  regard ing  the specif ic  p rope r t i e s  of the boundary layer  in a h igh-veloci ty  gas flow 
spu r r ed  a s tudy by Kibel '  [41], who was the f i r s t  to deal with the effect of the radiation of a f lat  su r face  on 
the su r face  t e m p e r a t u r e  in a supersonic  flow. 

In addition to studying the boundary  l ayer  i tself ,  Soviet sc ien t i s t s  also dealt  with the theory of turbulent  
s t r e a m s  and wakes behind objects .  A theory of turbulent s t r e a m s  and the i r  var ious  technical  applicat ions 
was der ived and studied in detail  by Abramovich [42], who subsequently published the f i r s t  fundamental  
monograph on this topic. Trubchikov studied the t e m p e r a t u r e  distr ibution in the wake behind a hot object  
[43]; the r e s u l t s  of this theory were  used to work out a the rma l  method for  measu r ing  the turbulence in 
aerodynamic  tubes. Pe t rov  and Shteinberg [44] studied the f requencies  of the p r e s s u r e  and veloci ty  pulsa-  
tions in a turbulent  flow in the near  and fa r  wakes behind objects of var ious  shapes .  They showed that the 
f ami l i a r  constancy of the Strouhal number  at sufficiently high Reynolds numbers  for  flow around objects of 
s i m i l a r  shape also held for  objects of different  shape and in different  or ienta t ions  with r e spec t  to the flow 
(e. g . ,  for  the case  of a wing at var ious  angles of attack) if the cha r ac t e r i s t i c  l inear  dimension used in the 
de terminat ion  of the Strouhal number  was taken to be some ave rage  width of the wake. 

There  is also much applied r e s e a r c h  which dese rves  mention.  The in te r fe rence  of the wing and fuse -  
lage turned in te res t  to the behav ior  of a boundary l aye r  nea r  the in te rsec t ion  of two planes at a r ight  [45] 
or  acute [46] angle. These  studies were  genera l ized  to the case  of the in tersec t ion  of two nonplanar  s u r -  
faces  [47, 48]. A re la ted  study involved a l inear ized formulat ion of the p rob lem of a th ree -d imens iona l  
l amina r  boundary l aye r  nea r  the la te ra l  edge of a plate [49]. Kal ikhman [50] der ived integral  re la t ions  for  
the genera l  case  of a th ree -d imens iona l  boundary layer .  

Equations for  the d rag  of a rough sur face  were  used to der ive  a new equation [51] for  conver t ing la -  
b o r a t o r y  data  on the losses  in the working r ings of hydroturbines  for  use under  nonlabora tory  conditions. 

Theore t ica l  and exper imenta l  studies were  made of how the lift of an a i r c r a f t  wing is affected by d r aw-  
[ng off or  blowing off the boundary  l ayer  [52, 53]; this topic, new at the t ime,  was of cons iderable  p rac t i ca l  
importance .  During the p r e w a r  yea r s  Soviet sc ien t i s t s  developed exper imenta l  techniques for  measur ing  
the local c h a r a c t e r i s t i c s  of boundary  l aye r s  under both l abora to ry  and nonlabora tory  conditions [54, 56]. 

In [57] the bas ic  r e su l t s  of Soviet theoret ica l  and exper imenta l  bounda ry - l aye r  r e s e a r c h  were  s u m -  
mar i zed  in a Russ ian- language  monograph for  the f i r s t  t ime.  

3. The Second World War confronted Soviet technology, p r i m a r i l y  aviation, with the p rob lem of in- 
c reas ing  the speed,  altitude, and range of a i rc ra f t .  Bounda ry - l aye r  theory played a basic  role  in these 
s tudies ,  s ince though the speeds  achievable at that t ime were  fa r  below the speed of sound, compres s ib i l i t y  
was neve r the le s s  an important  considerat ion.  An effor t  was made to find be t te r  airfoi l  shapes  for  high- 
speed a i rc ra f t ,  pa r t i cu l a r ly  to inc rease  the speed achievable with exist ing rec ip roca t ing  engines. 

The theore t ica l  r e s e a r c h  [58] was supplemented by an effor t  to s impl i fy  and ref ine  approximate  meth-  
ods for  calculat ing boundary layers ;  in pa r t i cu la r  an effor t  was made to de te rmine  more  accura te ly  the 
separa t ion  point, a question of impor tance  not only for  de termining  the capabi l i ty  of a wing, but also for  
calculat ing the t ransi t ion of the l amina r  l ayer  into a turbulent  layer .  In addition to the new, pure ly  intuitive, 
methods [59-61], a more  ra t ional  approach developed, based on the use of exact  solutions of pa r t i cu la r  
p rob l ems  f r o m  the theory of a l amina r  boundary l ayer  for  the genera l  case  of an a r b i t r a r y  ex te rna l -ve loc i ty  
distr ibution.  The s i n g l e - p a r a m e t e r  method derived by Kochin and Loi tsyanski i  [62] was devoted to this 
p rob lem.  It was also impor tant  to der ive  a s imple  p rac t i ca l  method for  calculat ing a turbulent boundary 
layer;  this p rob l em  was solved by Loitsyanski i  [63]. The empi r i ca l  method which he proposed was based 
on the s imi l a r i t y  between the c h a r a c t e r i s t i c s  of l aminar  and turbulent  boundary  l ayers .  This method found 
wide use in p rac t ica l  calculat ions of the d rag  profi le  of wings and turbine blades .  Other methods based on 
s e m i e m p i r i c a l  considera t ions  and involving more  compl ica ted  calculat ions were  also proposed.  

An impor tant  contribution was made to the theory of the boundary l ayer  in a h igh-veloci ty  gas flow by 
Dorodni t syn ' s  der ivat ion of an integral  t r ans fo rmat ion  [66-68] which could 'be used to conver t  the left s ides 
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of the dynamic and the rmal  bounda ry - l aye r  equations to the f o r m s  of the cor responding  equations in an in- 
c o m p r e s s i b l e  fluid. In cer ta in  pa r t i cu la r  cases  (e. g . ,  that in which the Prandt l  number  is unity and the 
su r face  of the object  is the rmal ly  insulated), the convers ion  becomes  exact .  Dorodni tsyn 's  t r ans format ion  
immedia te ly  found wide applications and s pu r r ed  a long l ist  of Soviet s tudies [69, 70] of both l aminar  and 
turbulent boundary l ayers .  Dorodnitsyn and Loitsyanski i  [71, 72] der ived a method for  calculat ing a l a m -  
inar boundary layer  which was s imple  but useful only at comparat ivelY low Mach numbers ,  no g r e a t e r  than 
two or  three.  This method is based on the s ame  idea as the s i n g l e - p a r a m e t e r  methods mentioned above 
for bounda ry - l aye r  theory in an incompress ib le  fluid. It has led to equations convenient for p rac t ica l  ap-  
pl icat ions,  in par t i cu la r ,  for  de termining the effect  of the  Mach number  on the separa t ion  point on the p r o -  
file of a wing in a subsonic flow. This determinat ion was aided cons iderably  by the s imple  p rac t i ca l  me th-  
ods available at that t ime for  calculat ing the veloci ty  at the outer  boundary of the boundary layer  on a wing 
in an incompress ib le  fluid [73-75] and in a subsonic flow [76]. 

These  papers  also descr ibed  a s imple  method for  de te rmin ing  the point at which the l aminar  boundary 
layer  conver ts  into a turbulent layer .  In this method, based  on the f ami l i a r  Tay lo r  arguments  about the 
re la t ionship between the convers ion points and the layer  separa t ion ,  both the effect  of the wing shape and 
the turbulence of the incident flow a re  taken into account. The resu l t s  furnished the bas i s  for  the rat ional  
design of wings for  new high-speed a i rc ra f t .  When the wing shape chosen is such that the point at which the 
l amina r  motion conver ts  into turbulent motion is shifted downst ream,  and when the effect of the a i r  c o m -  
p re s s ib i l i t y  is minimized,  the wing drag  can be reduced considerably ,  so the speed can be increased  con-  
s iderably .  The use of sweptback wings in a i r c ra f t  has spu r r ed  development  of bounda ry - l aye r  theory on 
cor responding  su r faces  [77, 78]. 

Effords to reduce the wing drag  of a i r c r a f t  and the drag  of ship hulls led to a t tempts  to solve this 
p rob lem by introducing into the boundary l ayer  a liquid or  gas of lower densi ty  than that of the incident flow 

[79, 801. 

Many studies of applied in te res t ,  c a r r i ed  out ia aerodynamic  labora tor ies  and under flight conditions 
in the Soviet Union during the Second World War, a re  not amenable  to calculat ion and cannot be d iscussed  
in this review. Many of these studies dealt  with phenomena within the boundary layer  on a wing or fuselage 
and with the quantitative re la t ionship between these phenomena and the bas ic  flight cha rac t e r i s t i c s  of a i r -  

craf t .  

4. After the war ,  theoret ica l  studies continued for  genera l  p rob lems  of liquid and gas flows. New 
fields a rose ,  due p r i m a r i l y  to the increas ing a i r speeds  and the appearance  of the jet  engine. 

Working f rom the fami l i a r  mathemat ica l  concept of the moment  of a function, Loi tsyanski i  [81] in- 
t roduced a new s y s t e m  of integral  re la t ions  - moment  equations - and used them to der ive  a method of 
calculat ing a p lanar  and l amina r  boundary layer ,  which subsequent ly  also found use in heat calculat ions 
[82, 83]. The moment  method was used in p rob lems  involving both heat and mass  t r a n s f e r  in planar  bound- 
a ry  l ayers  at porous walls in a s e r i e s  of a r t ic les  by Shul 'man [84-86]. 

In teres t  developed in p rob lems  involving th ree -d imens iona l  boundary l ayers .  Bogdanova [87] derived 
a new c lass  of exact  solutions of the equations of a th ree -d imens iona l  l aminar  layer;  these exact solutions 
were  used to cons t ruc t  an approximat  e s i n g l e - p a r a m e t e r  method for  solving p rob lems  with an a r b i t r a r y  
external  veloci ty  distr ibution.  

Turbine technology spur red  the solution of many dynamic and heat p rob lems  dealing with the ca lcu la -  
tion of l amina r  and turbulent,  veloci ty  and t empera tu re ,  th ree -d imens iona l  boundary  l aye r s  on rotat ing 
discs  and other  ax i symmet r [ c  objects .  

These solutions and their  analysis  fo rmed  the content of a specia l  monograph by Dorfman [88], which 
dealt with both s t eady - s t a t e  and nons teady-s ta te  boundary l aye r s  on rotat ing objects .  Dolidze [89] pointed 
out a r igorous  method for  solving the equations of a nons teady-s ta te  boundary layer  on a rotat ing disc for  
an a r b i t r a r y  t ime dependence of the angular  velocity.  The exact  solution was found for  this p rob lem for  
an a r b i t r a r y  power- law angular  veloci ty  by Rozin [90]. 

A s e r i e s  of studies c a r r i ed  out in bounda ry - l aye r  theory during the pos twar  period at the Central  
Aerodynamic  Insti tute were  repor ted  in [91]. Dorodnitsyn [92] published in final f o rm his theory for  l ami -  
nar  boundary layer  in a high-veloci ty  gas flow. Struminski i  [93] published a theory for a th ree -d imens iona l  
boundary layer  on a wing with sl ip in the flow of an incompress ib le  liquid or  gas.  Sokolova studied the 
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effect  of radiat ion on the su r face  t e m p e r a t u r e  of a plate [94] and a cone [95] in supersonic  flows at high Mach 
numbers .  Struminski i  [96] genera l ized  the K a r m a n -  Polhausen method to the case  of a nons teady-s ta te  
boundary l ayer  in an incompress ib le  fluid on a cyl inder  and on a solid of revolution.  He found an exact so -  
lution of the equations for  a nons teady-s ta te  boundary layer  for  the case  of longitudinal flow around a plate.  

Simple methods for  calculat ing nons teady-s ta te  l aminar  boundary layers  were  suggested by Rozin [97] 
and Dobryshman [98]. Dobryshman genera l ized  the method of Shvets [99], proposed for  a s t e ady - s t a t e  

b o u n d a r y  layer ,  to the nons teady-s ta te  case .  T a r g  took a s i m i l a r  approach,  based on his own method for  
calculat ing a s t e a d y - s t a t e  layer .  He repor ted  the solution of ce r t a in  c l a s se s  of p rob lems  in the dynamics  
of a v iscous ,  incompress ib le  fluid, including bounda ry - l aye r  p rob lems  [100]. 

The adoption of the jet  engine in aviation cons iderably  spur red  the development  of bounda ry - l aye r  
theory  in the pos twar  period.  Bounda ry - l aye r  theory furnished a method for  calculat ing the loss in a p lanar  
a r r a y  of a i rfoi ls  s imula t ing  the working r ings and guide apparatus  of turbines and c o m p r e s s o r s  used in tu r -  
bojet  engines; this theory  yielded express ions  for  the propagat ion of the jet  s t r e a m  in the surrounding air .  

Lo i t syansk i i ' s  method for  calculat ing the loss and efficiency of planar  turbine and c o m p r e s s o r  a r r a y s  
in s epa ra t ion l e s s - f low operat ion [101-103] turned out to be quite s a t i s f ac to ry  and was adopted for  eng ineer -  
ing calculat ions [104]. The bas ic  equation recommended  in this method is a genera l iza t ion  of the f ami l i a r  
S q u i r e - Y o u n g  equation for  an isolated airfoi l  to the case  of an a r r a y  of a i r fo i ls .  

Because  of the wide use of jets  in aviation and rocket  technology, in gas bo i le rs ,  and in chemical  ap-  
pa ra tus ,  the theory of je ts  has been developed extensively in the Soviet l i t e ra ture .  Soviet sc ien t i s t s  we re  
the f i r s t  to formula te  theore t ica l ly  and solve p rob lems  dealing with jets  propagat ing along solid sur faces  
[105, 106], twisted jets ,  and fan-shaped  jets  [107, 108]; they genera l ized  the resu l t s  found in the c lass ica l  
theory of f ree  jets  to many more  compl ica ted  cases  which a r i se  in technical  applications:  jets  in wakes,  
jets  in media  having vary ing  physical  constants ,  je ts  in inert  gases  and in gases  reac t ing  chemica l ly  with 
their  surroundings ,  burning jets ,  etc.  Here we cannot dwell on the development  of this a rea  of ove r - a l l  
bounda ry - l aye r  theory,  which long ago became an independent branch.  Fo r  a detailed discuss ion of Soviet 
achievements  in the theory and technical  applications of jets  the r e a d e r  is directed to the basic  monograph 
by Abramovich  [109] and to a collect ion of original  papers  edited by Vulis [110]; this collection also con-  
tains an exhaust ive bibl iography.  

A recent  monograph by Ginevskii  [111] dealt  with applications of integral  methods of bounda ry - l aye r  
theory in the theory  of turbulent  je ts  and wakes .  Resul ts  obtained by Soviet and foreign sc ien t i s t s  were  r e -  
ported; the emphas is  was on the resu l t s  obtained by Ginevskii and his col leagues regard ing  jets  and wakes 
in both c o m p r e s s i b l e  and incompress ib le  fluids, pa r t i cu l a r ly  noniso thermal  jets  in homogeneous gases  and 
gaseous mix tures .  

5. The last  decade, which can fa i r ly  be cal led the beginning of the space  age.~ saw rapid development  
of b o u n d a r y - l a y e r  theory in the USSR. The p rob lems  ar i s ing  in the ae rodynamics  and the rmodynamics  of 
space  flight have been ve ry  compl ica ted,  both physica l ly  and mathemat ica l ly .  The development  of high- 
speed digital compute r s ,  whose sophist icat ion is advancing daily, has allowed sc ien t i s t s  to cope with the in- 
tegrat ion of the di f ferent ia l  equations of bou nda ry - l aye r  theory,  despi te  the fact  that the c l a s s i ca l  Prandt[  
equation has long s ince given way to a v e r y  compl ica ted s y s t e m  of different ial  equations containing many un- 
known functions cha rac t e r i z ing  the va r i e ty  of gas dynamic and thermodynamic  p r o c e s s e s  in boundary layers  
at hypersonic  gas ve loci t ies .  

New difficult ies have a r i sen  because  physics  r e s e a r c h  has not yet produced models (sufficiently s imple  
for  p rac t ica l  use) for  energy  and mass  t r ans f e r  in h igh-speed flows of a homogeneous gas or  a mix tu re  of 
iner t  and reac t ing  gases .  Inves t iga tors  do not know the per t inent  coefficients  fo r  this type of t r an s f e r  or  
the behavior  of these  coefficients  as functions of the gas -dynamic  and thermodynamic  p a r a m e t e r s  of the 
flow. A pa r t i cu l a r  difficulty has been the need to analyze t rans ien t  t r an s f e r  p r o c e s s e s  in a boundary layer  
[n a the rmodynamica l ly  nonequi l ibr ium situation, because  of the high flow veloci t ies .  This complexi ty  is 
ref lec ted  in the va r i e t y  of re laxat ion t imes  for  the distr ibution of molecu la r  kinetic energy with r e spec t  to 
the internal  molecu ta r  degrees  of f r eedom and in the re laxat ion nature  of molecu la r  dissociat ion,  molec -  
ular  ionization, and radiat ion.  

This se t  of complex p rob lems ,  along with the p rob l ems  which arose  during previous  per iods  and which 
remain  important ,  a re  st i l l  being studied in the development  of b o u n d a r y - l a y e r  theory in the Soviet Union. 
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A prob lem as yet unresolved and requir ing analysis  is that of the s t eady - s t a t e  th ree -d imens iona l  
boundary layer;  in par t i cu la r ,  it is n e c e s s a r y  to determine the mechan i sm for  th ree -d imens iona l  s e p a r a -  
tion of l aminar  and turbulent boundary layers  on the sur face  of a cone at an a r b i t r a r y  angle of at tack in a 
gas flow [112-114] and to study the interact ion of the separa t ion  with a condensation discontinuity [115]. 

There  has been a continuing study of t rans ien t  boundary layers  in h igh-veloci ty  flows; new c l a s se s  of 
s e l f - s i m i l a r  solutions have been found for  both p lanar  boundary l aye r s  and those on solids of revolution 
[116]; and t r ans i en t -mix ing  p rob l ems  have been formulated and solved for  turbulent je ts  [117, 118] and 
aerodynamic  wakes.  In a s e r i e s  of studies by Oleinik important  exis tence theorems  have been establ ished 
for  the solutions of equations for  s t eady-s t a t e  and nons teady-s ta te  boundary layers  (see the bas ic  pape r  
[119], which contains a detailed bibl iography).  

Great  efforts  have been made to develop var ious  methods for  approximat ing l amina r  and turbulent 
boundary layers  in high-veloci ty  gas flows for  the cases  in which there is heat t r a n s f e r  and an a r b i t r a r y  
p r e s s u r e  distr ibution along the sur face  [120]. A va r i e ty  of applications of s e m i e m p i r i c a l  turbulence the-  
o r ies  to p rob lems  of this type were  repor ted  by Ginzburg et al. [121-123]. A prob lem re la ted  to space  
technology - the cooling of a solid su r face  in a hypersonic  flow - led to in teres t  in the effect  on heat t r a n s -  
fe r  of the blowing of a i r  or  some other  gas into a boundary layer  through a porous sur face .  The re  have 
been a vas t  number  of Soviet theoret ica l  and exper imenta l  studies on this topic; among the f i r s t  Soviet 
papers  published in this field are  those by Mugnlev [124, 125], Motulevich [126-128], Lapin [129-131], and 
Avduevskii  and Obroshova [132]. 

Computers  have been used in bounda ry - l aye r  calculat ions based on the Dorodnitsyn in tegra l - re la t ion  
method [133] and on the bas i s  of o rd inary  f in i te-di f ference  methods.  Paskonov [134] published a s tandard 
p r o g r a m  for  compute r  integrat ion of the different ial  equations of a l amina r  boundary layer  in a high-veloci ty  
gas flow. Applications of f in i te -d i f ference  methods for  var ious  p rob lems  involving a l amina r  boundary lay-  
er  in a gas were  repor ted  by Petukhov [135], Bra i lovskaya  and Chudov [136] (on s t eady - s t a t e  layers) ,  and 
Paskonov and Ryabin 'k ina  [137] (on nons teady-s ta te  layers) .  Specific fea tu res  of the boundary l ayer  in mul-  
t icomponent gas mix tu res  were  studied numer ica l ly  by Bula tskaya  [138] and Anfimov [139]. S imi la r  meth-  
ods have been used in p rob lems  dealing with boundary layers  for  the cases  in which air  is pumped in or  
drawn off [140]. 

Numer ica l  methods have been used to study a va r i e ty  of th ree -d imens iona l  p rob lems  involving a l a m -  
inar boundary l ayer  in a supersonic  gas flow: on an infinitely long el l ipt ical  cyl inder  with s l ip [141], on an 
ell ipsoid of revolution at some  angle Of attack [142], on a spher ica l  segment  [143], etc. 

The new "pa rame t r i c  method" of Loitsyanskii  [144-147] occupies an in te rmedia te  posit ion between the 
exact  numer ica l  methods and approximate  analytic methods.  It is based  on a "universa l"  fo rm of the dif-  
ferent ia l  equations for  a planar  boundary layer ,  i . e . ,  one which does not depend on the c h a r a c t e r i s t i c s  of 
the pa r t i cu la r  p rob lem (the distr ibutions of the external  velocity,  t empe ra tu r e ,  e tc . ) .  After these univer -  
sal  equations have been integrated numer ica l ly  once, they can be used to solve pa r t i cu la r  p rob lems .  Tables  
can be used to find the re la t ionships  between the bas ic  c h a r a c t e r i s t i c s  of the boundary layer  and the f o r m  
p a r a m e t e r s  which appear  as independent va r i ab les  in the universa l  equations. The p a r a m e t r i c  method has 
been successfu l ly  used in p rob lems  involving a s t eady- s t a t e  l amina r  boundary layer  - th ree -d imens iona l  
l ayers  in incompress ib le  fluids [148], p lanar  l aye r s  in h igh-ve loc i tyf lows of homogeneous gases  [149, 150] 
and gases  at a d issocia t ive  equi l ibr ium [151, 152], and p lanar  [153, 154] and th ree -d imens iona l  [155,156] 
boundary layers  in e l ec t r i ca l ly  conducting fluids in the p re sence  of a magnetic field. The method can be 
fo rmal ly  extended to the case  of a turbulent boundary layer  [142]. 

The rapid convective and radia t ive  gas heating which occurs  in a hypersonic  boundary layer  has s e v -  
e ra l  unique effects :  dissociat ion of the gas,  its ionization and mel t ing and subsequent evaporat ion (or di -  
rec t  sublimation) of the solid sur face .  As a resul t ,  foreign gases  en te r  the boundary layer ,  changing the 
flow into a mult icomponent  flow and complicat ing the descr ip t ion of t r a n s f e r  p roces ses ;  s o m e t i m e s  there  
a re  also gases  p resen t  which reac t  chemical ly .  

In the f i r s t  s tudies repor ted  (in the ea r ly  1960s) by Soviet sc ien t i s t s  in this field, which is of ex t r eme  
impor tance  for  space  technology, the format ion  kinetics of the new components  of a gaseous mixture  was 
not taken up, and only the s imples t  aspects  of d issocia t ion and ionization were  analyzed: the " f rozen"  and 
"equi l ibr ium" p r o c e s s e s .  These  topics we re  t rea ted  in [116, 130, 133, 146, 147]; a l amina r  boundary 
l ayer  was t rea ted  in [157] and a turbulent boundary l ayer  was t rea ted  in [158-163]. 

1164 



Subsequent r e s e a r c h  dealt  with all of these complex  p r o c e s s e s ,  and account was taken of the t h e r m o -  
dynamical ly  nonequi l ibr ium nature  of the t r ans f e r  p r o c e s s e s  cha r ac t e r i s t i c  of the ae rodynamics  of hype r -  
sonic boundary l aye r s .  

The p rob lem of re turning space  vehicles  into the dense a tomosphere  of the earth at veloci t ies  on the 
o rde r  of the second cosmic  veloci ty  presented  bounda ry - l aye r  theory  with the p rob lem of the rmal ly  insula t -  
ing the su r face  of the vehicle.  We omit  a discussion of the choice of ma te r i a l s  for  cover ing  the vehicle  and 
of the compl ica ted p r o c e s s e s  by which these cover ings  a r e  des t royed (with which, of course ,  Soviet spec i a l -  
is ts  were  forced to deal); he re  we will d iscuss  only the basic  r e s e a r c h  d i rec t ly  re la ted to the per t inent  
bounda ry - l aye r  theory.  

The f i r s t  Soviet theore t ica l  s tudies contained quantitat ive calculat ions of the su r face  t e m p e r a t u r e  and 
m a s s - r e m o v a l  ra te  based on s impl i f ied models for  the phys icochemtca l  p r o c e s s e s  at the su r face  and a 
" f rozen"  boundary l ayer  [160-162]. In [160, 161] the s imples t  models  we re  t rea ted  - the "boiling" of solid 
carbon dioxide and the equi l ibr ium combust ion of graphi te  in pure  oxygen. 

The fundamental  study by T i r sk i i  [163] yielded an exact  solution of the p rob lems  of the equi l ibr ium 
and nonequil ibr ium subl imation of a blunt object near  the c r i t i ca l  point for  an a r b i t r a r y  t e m p e r a t u r e  de-  
pendence of the ob jec t ' s  physical  p rope r t i e s .  

In many subsequent  Soviet s tudies this topic was developed and a deeper  understanding was gained 
of the va r i e ty  of p r o c e s s e s  occur r ing  in the gas flow and in the solid i tself  which a re  respons ib le  for  the 
des t ruct ion of the object  [165-167]. To s impl i fy  p rac t i ca l  calculat ions,  T i r sk i i  [168-170] used a genera l ized  
analogy between heat and mass  t r a n s f e r  in a mult icomponent  boundary l ayer  valid near  the frontal  c r i t i ca l  
point of the object,  The subsequent  development  involved genera l iza t ion  of the method to the case  of an a r -  
b i t r a r y  p r e s s u r e  dis t r ibut ion along a l amina r  boundary layer  and to the case  of a turbulent boundary l ayer  
[171-175]. The cor responding  the rmodynamic  p r o c e s s e s  we re  also taken into account. 

At p re sen t  the understanding of the dest ruct ion of solid su r f aces  in hypersonic  gas flows has advanced 
to the point [176, 177] at which des t ruc t ion  p rob lems  can be handled by computers  for  specif ic  objects ,  and 
the ent i re  se t  of phys icochemica l  react ions ,  involving the dissocia t ion and ionization of a gas mix ture  in 
the boundary l ayer  and the effect  of radiation,  can be taken into account [178-180]. 

Soviet sc ien t i s t s  have been pa r t i cu l a r ly  concerned with the effect  of the the rmodynamica l ly  nonequil ib-  
r i um nature of heat  t r ans fe r ,  dissociat ion,  and ionization in a hypersonic  boundary layer  on heat  t r a n s f e r  
at the sur face .  Studies have been made of the re laxat ion of the dis tr ibut ion of kinetic energy with r e spec t  to 
internal  molecu la r  degrees  of f r eedom [181-184], of the re la t ionship between vibrat ional  and d issoc ia t ive  
relaxat ion,  and of the effects  of these types of re laxat ion on heat t r an s f e r  in a l amina r  boundary layer  [185, 
lS61. 

The engineer ing p rob l em  of producing a magnetohydrodynamic  gene ra to r  has encouraged in te res t  in 
magnetohydrodynamics  in genera l  and in the theory of the boundary l ayer  in an e l ec t r i ca l ly  conducting fluid 
or  in an ionized gas (plasma), in par t i cu la r .  Severa l  ea r ly  studies [192, 193] dealt  with the basic  fo rmu la -  
lion of the b o u n d a r y - l a y e r  p rob lem in magnetohydrodynamics;  subsequent  studies have dealt  with par t icu la  r 
p rob l ems ,  e . g . ,  the rotat ion of a disc in a viscous  conducting fluid in the p r e sence  of a magnet ic  field [194- 
196], and the boundary  l ayer  formed at the walls of the magnetohydrogynamic  duct [197, 198]. 

The motion of noa-Newtonian fluids has come under  study in connection with the development  of new 
ma te r i a l s  (plastics and po lymers )  in pe t ro l eum technology. The group headed by Academician A. V. Lykov 
made an important  contr ibution to the theory  of boundary layers  in non-Newton[an fluids. A s e r i e s  of pub-  
l ications by this group [187-191] descr ibed  the resu l t s  of theore t ica l  and exper imenta l  s tudies of fr ict ion 
and heat and mass  t r an s f e r  in l aminar  boundary layers  of nonl inear ly  viscous non-Newtonian media.  The 
exist ing genera l iza t ions  of the solutions of bounda ry - l aye r  p rob l ems  to the case  of non-Newtonian fluids 
were  reviewed in [199]. Note should be taken of the possible  link between this field of bounda ry - l aye r  theory 
and magnetohydrodynamlcs  [200]. 

Questions involved in bounda ry - l aye r  theory for incompress ib le  fluids and some of the new resu l t s  
cited above were  d iscussed  in [201]. in addition, bounda ry - l aye r  theory has received cons iderable  a t ten-  
tion in genera l  cour ses  in fluid mechanics  [202, 203]. 

6. We conclude this review by taking up two topics which in a sense  occupy an in te rmedia te  position 
between the c lass ica l  Prandt l  bounda ry - l aye r  theory and the genera l  dynamics  of a viscous gas descr ibed  
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by the N a v i e r - S t o k e s  equations.  These  a r e  the interact ion of a l amina r  boundary l ayer  with an external ,  
inviscid hypersonic  flow and the p rob lem of a boundary l aye r  in a gas for  the case  of closed or  open s e p a r a -  
tion zones.  

In the upper  a tmosphere ,  where  the Reynolds numbers  dec rease ,  and at high speeds ,  at which the 
Mach numbers  increase ,  the l amina r  boundary layer  becomes  so thick that the c lass ica l  Prandt l  boundary-  
l ayer  equations and external  boundary conditions neglecting the r ec ip roca l  effect  of ttie boundary l aye r  on 
the external ,  inviscid hypersonic  flow, cannot be used. In these si tuations we must  r e s o r t  to app rox ima-  
tions in the solutions of the N a v i e r - S t o k e s  equations which are  m o r e  accura te  than the Prandt l  approx ima-  
tion, or  we must  even t ry  to solve these equations direct ly.  

The f i r s t  Soviet studies in this field were  concerned with es tabl ishing the genera l  s imi l a r i t y  c r i t e r i a  
for  this type of p lanar  and a x i s y m m e t r i c  flow and with finding approximate  solutions of the genera l ized  
equations of a l amina r  boundary l ayer  for thin, pointed objects .  Analyses were  made of both the weak in- 
teract ion,  cor responding  to modera te  Mach numbers  and re la t ive ly  high Reynolds numbers  [204-206], and 
the s t rong  interact ion,  with v e r y  large Mach numbers  and finite Reynolds numbers  [207-212]. In many of 
the s t rong- in te rac t ion  studies ,  the low density of the gas and the pa r t i cu l a r  boundary conditions at the wall  
(the sl ip of the gas and the t empe ra tu r e  discontinuity) have been taken into account. The solution has been 
wri t ten as a power s e r i e s  in powers  of a smal l  p a r a m e t e r  and ord inar i ly  only the f i r s t  approximat ion has 
been used. Matveeva and Sychev [213] have at tempted to refine this analysis .  

Ladyzhenskii  [214-216] t rea ted  th ree -d imens iona l  flow (a t r i angula r  plate; a thin object  at a smal l  
angle of attack). 

It is ve ry  difficult to t r ea t  cases  which lie between the cases  of s t rong  and weak interact ions,  p a r -  
t icular ly  those involving an interact ion which va r i e s  in intensi ty along the boundary layer ,  as is observed  
in the hypersonic  flow around thin but blunt objects .  In this case ,  the veloci ty  and t e m p e r a t u r e  boundary 
layers  are  accompanied by an entropy layer ,  in which the entropy of the gas changes sha rp ly  along the di -  
rect ion normal  to the sur face .  The eddy motion which a r i s e s  in the outer  inviscid flow under  these condi-  
tions fur ther  compl ica tes  the p rob lem [217]. To avoid the se r ious  difficulties which a r i se  in at tempts  to 
join the solutions of the bounda ry - l aye r  equations found in the approximat ions  following the Prandt l  approxi-  
mation with the solutions found for  the external  inviscid flow, a t tempts  have been made to solve the inverse  
p rob lem:  to cons t ruc t  the flow around some thin, blunt object whose contour is governed by the gas flow 
behind a shock wave with a specif ied f ront  shape (e. g . ,  parabolic)  [218]. 

The se r ious  calculation difficulties which a r i se  in this type of approximate  solution have forced in- 
ves t iga to r s  to turn to a d i rec t  numer ica l  solution of the N a v i e r - S t o k e s  equations [219-222]. As was shown 
in [223, 224], the difficulty assoc ia ted  with the indeterminacy of the boundary condition at infinity in the 
wake region can be avoided by exploiting the l imit ing case  of an infinitely la rge  Mach number  in the incident 
flow. 

Two monographs a re  now avai lable  dealing with the theory  of the interact ion of the boundary layer  with 
the external  inviscid flow [225, 226]. 

Theory  of the motion of liquids and gases  near  the separa t ion  of a boundary layer  and in separa ted  
zones also goes beyond the c lass ica l  Prandt l  theory and requ i res  the use of e i ther  higher approximat ions  
or  a d i rec t  integration of the N a v i e r - S t o k e s  equations. The bas ic  goal of this theory  has been to calculate  
the p r e s s u r e  drag  of an object  in supersonic  flight; the main reason  for  this theory is the bot tom p r e s s u r e  
behind the s t e rn  sect ion of the object.  

The f i r s t  s implif ied models for  separa ted  flow, based on s e m i e m p i r i c a l  theor ies  for  the mixing of a 
homogeneous gas flow with an adjacent gas at res t ,  were  or iginal ly  used to study one aspect  of the si tuation 
in the separa t ion  zone - determinat ion of the mass  of the gas drawn into the mixing zone [227-230]. The 
re turn  flow in the separa t ion  zone has also been t rea ted  [231, 232]. 

If we t r ea t  the separa t ion  line as fixed and t rea t  the mass  o~f the gas in the separa t ion  zone as constant,  
we can de te rmine  the c h a r a c t e r i s t i c s  of the flow f r o m  the separa t ion  zone, the zone configuration, and the 
bot tom p r e s s u r e .  Such calculat ions have been ca r r i ed  out in ax i symmet r i c  flows behind project ions  [233- 
236] and behind objects having s imple  shapes  [227, 237-239]. The format ion  of a separa t ion  zone at the 
front  of a blunt solid of revolution caused by a needle inser ted ups t r eam was studied in [229, 230, 240, 
241]. 
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If, on the other  hand, the posit ion of the separa t ion  line is not known beforehand,  it is cons iderably  
more  difficult to calculate  the cutoff flow; exper imenta l  data  and s imi l a r i t y  considera t ions  must  be used 
[242, 243]. Methods for  calculat ing the cutoff zones behind an acute angle and behind a sphere  have also 
been developed which are  not d i rec t ly  based  on exper iment  [228, 242, 243]. The heat fluxes to l aminar  and 
turbulent  separa t ion  zones have been evaluated.  A study has been made of the t ime required  for  the e s -  
tab l i shment  of s t e ady - s t a t e  flow in a turbulent  bot tom zone [244]. 

In the case  of r e l a t ive ly  smal l ,  closed separa t ion  zones,  a calculat ion can be c a r r i e d  out over  the en- 
t i re  flow region by using the o rd ina ry  bounda ry - l aye r  equations and inser t ing a co r r ec t ion  for  the inverse  
effect  of the boundary l ayer  on the inviscid flow, by taking the d i sp lacement  thickness into account. El 'k in  
and Neiland [228] used integral  conditions on the momenta  and enthalpy to solve this type of problem; they 
subst i tuted s i n g l e - p a r a m e t e r  ve loci ty  and enthalpy famil ies  into the bounda ry - l aye r  c ro s s  sec t ions .  

A topic somewhat  removed  f r o m  the m a i n s t r e a m  of the development  of bounda ry - l aye r  theory is the 
" inverse  t rans i t ion"  of a turbulent  boundary layer  into a l amina r  l ayer  [245-248]. This t ransi t ion usually 
occurs  when there  is a negat ive veloci ty  drop in convergent  channels and in converging regions of a bound- 
a ry  l ayer  in gas flows (especial ly  at nea r - son ic  veloci t ies) .  There  is much in te res t  in the new studies by 
Bulakh [249] of the behavior  of the boundary l ayer  nea r  a co rne r  on an object.  

We could not end a rev iew of such a rapidly  developing field of fluid mechanics  as modern  boundary-  
l ayer  theory  without pointing out that Soviet sc ien t i s t s  a re  continuing their  study of the physical  aspects  of 
hypersonic  flow in boundary l aye r s .  They are ,  of course ,  p r i m a r i l y  in teres ted  in radiat ion absorpt ion in 
gaseous  mix tures  and in de te rmin ing  the radia t ive  flux toward the su r face  of an object,  taking into account 
the se lec t iv i ty  of the radiat ion and its interact ion with other  p r o c e s s e s  in the boundary l aye r s .  The more  
c l a s s i ca l  aspects  of bounda ry - l aye r  theory (involving the future development  of methods for  solving th ree -  
d imensional  p rob lems;  the study of t rans ient  flow, magnetohydrodynamic  boundary l ayers ,  and boundary 
layers  in non-Newtonian fluids; and many other new questions) of course  r ema in  important .  
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